If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+5^2=12^2
We move all terms to the left:
a^2+5^2-(12^2)=0
We add all the numbers together, and all the variables
a^2-119=0
a = 1; b = 0; c = -119;
Δ = b2-4ac
Δ = 02-4·1·(-119)
Δ = 476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476}=\sqrt{4*119}=\sqrt{4}*\sqrt{119}=2\sqrt{119}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{119}}{2*1}=\frac{0-2\sqrt{119}}{2} =-\frac{2\sqrt{119}}{2} =-\sqrt{119} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{119}}{2*1}=\frac{0+2\sqrt{119}}{2} =\frac{2\sqrt{119}}{2} =\sqrt{119} $
| 2^(2x)+3^(3x)=146 | | 9n^2+18n+91=0 | | 6y-7=y-10 | | 3i=4 | | 4+2i=7+5i | | .05x=1000 | | 3r+7+9r=135 | | 18x+45=180 | | 50x+7=180 | | 6/8=4-x-6 | | 2^(x+1)=256 | | 2.2+0.1x=4.4 | | 52x-72=32 | | 7p-8=3p-4 | | 4.5+1.5x=54 | | 4/7(21/8x+1/2)=-2 | | 7a+3=a+21 | | 8.13=6.43+x | | 7q-4=8 | | 25x+10=14 | | 4x-52+2x+16=180 | | 2(x+3)=5(2x-5) | | 2x+6-x=4x-3 | | 7x+153=180 | | 4-5x=3x+60 | | 22x+153=180 | | x+74+x+2x-18=180 | | Y=4x+57 | | 6x-5-4x=-15 | | 3x+47=x+17 | | 20n=12=152 | | n-64=14 |